Briefs

Commentary and Summaries of our Work in AI

Predicting NAV delays with AI

In today's outsourced-dominant world, asset managers often have little control or visibility into their NAV production process. OnCorps created an AI algorithm that uses multiple data streams to predict when NAVs will be delivered late from the service provider. Developed alongside a Top 5 global asset manager, the algorithm has achieved a mean accuracy rate of 93% in just 3 months of training.

Read More

Decision Simulations

OnCorps has developed a pioneering approach to identifying and changing human behaviors. Traditional approaches to testing human behaviors are limited and infrequent. Polls and focus groups elicit what people think they will do, but not what they will actually do. Our approach, alongside our partners at Yale's Human Nature Lab, enables us to create a simulated environment that tests behavioral algorithms before they are exposed to customers. We recently applied this method to the collections function of financial institutions, where we changed behaviors to decrease time-to-pay by over 15 percent.

Read More

AI for Managing OTC Derivative Confirms

Bespoke OTC derivatives continue to be an important risk management tool for portfolio managers, yet remain a headache for middle office teams. But burgeoning AI technologies, including document parsing and intelligent exception management, are poised to solve these operational challenges.

Read More

Data Challenges in Adopting AI

It’s no secret that clean, reliable data (and a lot of it) is crucial when implementing learning technologies. Within asset management operations, however, gathering ‘good data’ is met with significant roadblocks. As a result, OnCorps’ data scientists were forced to get creative when thinking about how to successfully design, train, and implement AI algorithms within fund operations.

Read More

Detecting and Correcting Eye Glaze Syndrome in Oversight

Psychology research has proven that the human brain can handle only a certain amount of information before cognitive performance begins to decline. OnCorps’ research team thought to apply this behavioral theory to an oversight environment to test how well humans are able to process large amounts of data and identify errors.

Read More

A systematic approach to predicting NAV errors

After analyzing over a decade of NAV errors and their root causes, OnCorps’ data science team created a comprehensive, algorithmic approach to overseeing granular accounting data to identify potential NAV-impacting anomalies.

Read More

The challenge of detecting errors in complex statements

The OnCorps team was asked to build an AI platform that would reduce as many hours as possible by error checking a complex and lengthy semi-annual financial statement.

Read More

Predicting NAV delays with AI

Read More

Decision Simulations

Read More

AI for Managing OTC Derivative Confirms

Read More

Data Challenges in Adopting AI

Read More

Detecting and Correcting Eye Glaze Syndrome in Oversight

Read More

A systematic approach to predicting NAV errors

Read More

The challenge of detecting errors in complex statements

Read More

Interested in discussing a solution?

Get in touch